Lesson 1: Temperature Measurement Principles and Indicators
Topics
- Temperature; Heat; Specific Heat; Changing Physical State; Fahrenheit and Celsius Temperature Scales; Rankine and Kelvin Scales; Calibration of Temperature Scales; Primary and Secondary Standards; Industrial Uses of Temperature Measurements; Temperature-Measuring Instruments; Color Change as a Temperature Indicator; Melting Point as a Temperature Indicator

Objectives
- Define thermal energy and explain the relationships among thermal energy, heat, and temperature in a substance.
- Correlate changes in temperature with changes in a substance’s physical state.
- Compare four temperature scales, and convert temperature readings from one scale to another.
- Explain how primary and secondary temperature calibration standards are used.
- Describe various temperature-measuring devices and contrast thermometers and pyrometers.

Lesson 2: Bimetallic and Fluid-Filled Temperature Instruments
Topics
- Bimetallic Thermometers; Liquid-in-Glass Thermometers; Filled-System Thermometers; Liquid-Filled Systems; Gas-Filled Systems; Vapor-Pressure Systems; Thermometer Bulbs; Capillary Tubes and Bourdon Tubes; Temperature Transmitters for Filled Systems; Advantages and Disadvantages of Filled Systems

Objectives
- Discuss the physical characteristics and operation of bimetallic thermometers.
- Describe how liquid-in-glass thermometers are constructed and how they operate.
- Compare liquid-, gas-, and vapor-filled systems and discuss their advantages and disadvantages.
- Explain how a mercury thermometer operates.

Lesson 3: Electrical Instruments
Topics
- How Resistance Thermometers Work; Wheatstone Bridge Circuits; Lead-Wire Error; RTD Elements; Advantages and Disadvantages of RTDs; Thermistors; Advantages and Disadvantages of Thermistors; Thermocouples; Extension Wires; Compensating for Changes in Reference-Junction Temperature; Advantages and Disadvantages of Thermocouples

Objectives
- Discuss the relationship between temperature and electrical resistance.
- Describe the function of RTD bridge circuits and explain how to calculate lead-wire errors.
- Compare the accuracy, response time, stability, and circuit complexity of RTDs and thermistors.
- Explain how the operation of a thermocouple and explain how to compensate for changes in the reference junction temperature.

Lesson 4: Pyrometry
Topics
- Molecular Activity and Electromagnetic Radiation; Principles of Pyrometry; Effects of Emittance; Effects of Temperature; Wavelength of Radiated Energy; Pyrometers and Wavelengths; Narrowband Pyrometers; Manual Optical Pyrometers; Using the Optical Pyrometer; Automatic Optical Pyrometers; Broadband Pyrometers; Using the Broadband Pyrometer; Bandpass Pyrometers

Objectives
- Discuss the principles that govern noncontact thermal measurements.
- Define electromagnetic radiation and emittance.
- Discuss the characteristics of a blackbody.
- Describe the effects of temperature and emittance on radiation intensity.
- Describe the operation of optical and radiation pyrometers.
Lesson 5: Temperature Instrument Maintenance and Calibration

Topics
- Primary Calibration Standards; Primary Standard Instruments; Secondary Standard Instruments; Instrument Inspections; Controlled-Temperature Environments; Using Triple-Point Baths; Ice Baths; Other Fixed-Temperature References; Calibration and Testing Methods

Objectives
- Compare and define primary, secondary, and working calibration standards.
- Describe typical testing procedures for temperature-measuring instruments.
- Describe routine maintenance and calibration procedures for temperature-measuring instruments.
- Explain how to use controlled-temperature environments—ice baths, triple-point baths, fluid baths, and fluidized baths.
- Explain how to calibrate liquid-in-glass thermometers, thermocouples, resistance thermometers, and pyrometers.