Course 271: Introduction to Process Measurement and Control

Covers the function of basic devices for measuring and controlling different kinds of variables in process control. Introduces analog and digital devices and programmable logic controllers (PLCs). Covers basic principles of measurement and defines process control terms. Describes several kinds of signals and displays and traces the path of a signal through the system. Explains the operation of transducers, transmitters, signal conditioners, converters, and recorders.

TPC Training is accredited by IACET to offer 0.6 CEU for this program.

Lesson 1: The Nature of Process Control

Topics
- Process Variables; On-Off Process Control; Functions of Automatic Process Control; Typical Process Control Applications; Measuring Data in Control Systems; Controlling Variables Automatically; Error, Signal Evaluation, and Feedback; Open- and Closed-Loop Control Systems

Objectives
- Define setpoint, control point, and error.
- Explain how measurement and control are related in industrial processes.
- Describe the four essential functions of an automatic control system.
- Discuss the functions of PLCs and industrial computers in control systems.
- Identify variables in industrial processes.
- Explain the importance of feedback in a closed-loop control system.

Lesson 2: Elements of Process Control

Topics
- Process Operation; Analog Control Signals; Digital Control Signals; ASCII; Measuring Process Variables; Measuring Pressure; Measuring Level; Measuring Flow Rate; Digital Pulse Control; Control System Terminology; Open- and Closed-Loop Control; Controller Action

Objectives
- Discuss the differences between modern automatic control systems and older ones.
- Identify the standard signals used in process control.
- Define the terms commonly used in control terminology.
- Describe on-off, proportional, integral, derivative, and PID controller action.

Lesson 3: Process Control Signals

Topics
- Process Signals; Linear and Nonlinear Transducers; Signal Operating Values; Error in Signal Measurement; Controller Output; Pneumatic Signal Transmission; Flapper-Nozzle System; Electrical Signal Transmission; Current-Pneumatic Systems; Transmission of Other Signals; Typical Control Loops

Objectives
- Discuss standard signals and linearity and explain how to calculate the value of a variable from an instrument’s span and range.
- Describe five common sources of error in signal measurement.
- Discuss the basic principles governing pneumatic signal transmission and explain how a flapper-nozzle device works.
- Describe the function of the controller in a control loop.
- Discuss the basic principles governing electrical signal transmission, including Ohm’s law, and list standard current and voltage signals.
- Explain the function of I/P devices in a typical control system and discuss the use of digital signals and optical signals.

Lesson 4: Process Measurement Fundamentals

Topics
- The Purpose of Measurement; Kinds of Signals; Measurement Requirements; Kinds of Displays; Remote vs Local Display; Errors in Measurement Systems; Calibration; Noise; Response Time; Measurement System Deterioration; Observation Errors; Transmitters; Proportionality

Objectives
- Explain why measurement is necessary and discuss conditions that affect the degree of accuracy required.
- Compare the advantages of linear and nonlinear displays.
- Compare analog and digital devices and explain how each is applied to measurement.
- Name five sources of measurement error.
- Discuss proportionality and explain how it applies to transmitters.
Lesson 5: Principles of Transducer Operation

Topics
Signal Measurement and Transmission; Matching the Transducer to the Application; Kinds of Output; Mechanical and Electrical Elements; Pneumatic Response; Relating Distortion to Pressure; Electrical Response; Resistance Devices; Voltage Response Devices; Frequency Response Devices; Electromechanical Devices; Combining Elements; Transducers and Today’s Technology

Objectives
• Discuss the need for linearity in a process.
• List examples of mechanical and electrical transducer elements.
• Compare pneumatic response and electrical/electronic response in transducers.
• Describe the operation of the bourdon tube, bellows, and diaphragm.
• Give examples of resistance, voltage response, frequency response devices and explain how they work.
• Discuss the use of the Hall-effect transducer and the differential transducer.

Lesson 6: Basic Process Measurement Systems

Topics
Interaction of System Elements; Translating the Measurement; The Transmitter as Communicator; Electrical vs Pneumatic Output; Analog Signal Conditioning; Analog Signal Converters; Converting from Analog to Digital and Back; Analog Indicators; Analog Recorders; Digital Indicators and Recorders; A Complete System

Objectives
• Discuss the basic elements of measuring systems and explain how they interact.
• Describe how a physical quantity is translated into another quantity.
• Discuss the use of transmitters to relay information from one location to another and explain the transfer function.